## The Interior Angles of Regular Polygons

Here are 5 regular polygons.


Measure each angle and complete the table below.

| Shape | Number of Angles | Interior Angle | Total of <br> All Interior Angles |
| :---: | :---: | :---: | :---: |
| equilateral triangle |  |  |  |
| square |  |  |  |
| regular pentagon |  |  |  |
| regular hexagon |  |  |  |
| regular octagon |  |  |  |

In the space below, draw an equilateral triangle and a square.

## The Interior Angles of Regular Polygons

Here are 8 regular polygons.


Record the name of each shape, the number of angles, the size of the interior angle and the total of the interior angles of each shape on the grid below.

| Shape | Number of Angles | Interior Angle | Total of <br> All Interior Angles |
| :---: | :---: | :---: | :---: |
| e.g. equilateral triangle | 3 | $60^{\circ}$ | $180^{\circ}$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Describe any patterns you can see.

Accurately draw these shapes on plain paper.

## The Interior Angles of Regular Polygons

A square could be drawn by drawing a line, turning $90^{\circ}$, drawing a second line of the same length, turning $90^{\circ}$, repeating this until you have drawn a square. You will make a final $90^{\circ}$ turn to face the direction in which you started.

How many turns of $90^{\circ}$ would you make? $\qquad$
What is the total turn? $\qquad$
What angle would you turn to draw an equilateral triangle? $\qquad$
What would be the total turn for an equilateral triangle?
How could you use the turn each time to find the interior angle of each regular polygon?

How would you calculate the interior angle from the angle of turn?

Use your answers to the above questions to find the turn for each regular polygon, and therefore the interior angle. Record your results in the table below.

| Shape | Number of <br> Angles | Angle of Turn | Interior Angle | Total of All <br> Interior Angles |
| :---: | :---: | :---: | :---: | :---: |
| e.g. equilateral triangle | 3 | $120^{\circ}$ | $60^{\circ}$ | $180^{\circ}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Write a formula for the turn needed for any polygon with $n$ number of sides.

What is the interior angle for regular polygons with $15,20,30,60$ and 100 sides?

## The Interior Angles of Regular Polygons Answers

| Shape | Number of Angles | Interior Angle | Total of <br> All Interior Angles |
| :---: | :---: | :---: | :---: |
| equilateral triangle | 3 | $60^{\circ}$ | $180^{\circ}$ |
| square | 4 | $90^{\circ}$ | $360^{\circ}$ |
| regular pentagon | 5 | $108^{\circ}$ | $540^{\circ}$ |
| regular hexagon | 6 | $120^{\circ}$ | $720^{\circ}$ |
| regular octagon | 8 | $135^{\circ}$ | $1080^{\circ}$ |

## The Interior Angles of Regular Polygons

## Answers

| Shape | Number of Angles | Interior Angle | Total of <br> All Interior Angles |
| :---: | :---: | :---: | :---: |
| e.g. equilateral triangle | 3 | 600 | 1800 |
| square | 4 | $90^{\circ}$ | $360^{\circ}$ |
| regular pentagon | 5 | $108^{\circ}$ | $540^{\circ}$ |
| regular hexagon | 6 | $120^{\circ}$ | $720^{\circ}$ |
| regular octagon | 8 | $135^{\circ}$ | $1080^{\circ}$ |
| regular nonagon | 9 | 10 | $144^{\circ}$ |
| regular decagon | 12 | $150^{\circ}$ | $1440^{\circ}$ |
| regular dodecagon |  |  | $1800^{\circ}$ |

Describe any patterns you can see.
The total of all interior angles increases by $180^{\circ}$ each time.

# The Interior Angles of Regular Polygons <br> <br> Answers 

 <br> <br> Answers}

How many turns of $90^{\circ}$ would you make? 4
What is the total turn? $\mathbf{3 6 0}{ }^{\circ}$
What angle would you turn to draw an equilateral triangle? $\mathbf{1 2 0}^{\circ}$
What would be the total turn for an equilateral triangle? $\mathbf{3 6 0}{ }^{\circ}$
How could you use the turn each time to find the interior angle of each regular polygon?

## Angle of turn $\times$ number of angles $=360^{\circ}$

How would you calculate the interior angle from the angle of turn?
Interior angle + angle of turn $=180^{\circ}$, so interior angle $=180^{\circ}$ - angle of turn
Use your answers to the above questions to find the turn for each regular polygon, and therefore the interior angle. Record your results in the table below.

| Shape | Number of <br> Angles | Angle of Turn | Interior Angle | Total of All <br> Interior Angles |
| :---: | :---: | :---: | :---: | :---: |
| e.g. equilateral triangle | 3 | $120^{\circ}$ | $60^{\circ}$ | $180^{\circ}$ |
| square | 4 | $90^{\circ}$ | $90^{\circ}$ | $360^{\circ}$ |
| regular pentagon | 5 | $72^{\circ}$ | $108^{\circ}$ | $540^{\circ}$ |
| regular hexagon | 6 | $60^{\circ}$ | $120^{\circ}$ | $720^{\circ}$ |
| regular octagon | 8 | $45^{\circ}$ | $135^{\circ}$ | $1080^{\circ}$ |
| regular nonagon | 9 | $40^{\circ}$ | $140^{\circ}$ | $1260^{\circ}$ |
| regular decagon | 10 | $36^{\circ}$ | $144^{\circ}$ | $1440^{\circ}$ |
| regular dodecagon | 12 | $30^{\circ}$ | $150^{\circ}$ | $1800^{\circ}$ |

Write a formula for the turn needed for any polygon with $n$ number of sides.
Angle of turn $=360^{\circ} \div$ number of sides.
What is the interior angle for regular polygons with $15,20,30,60$ and 100 sides?
$156^{\circ}, 162^{\circ}, 168^{\circ}, 174^{\circ}, 176.4^{\circ}$

